
A Bayesian Conditional Model for Sense Induction and Translation

Abstract
We introduce a Bayesian conditional
model of translation with latent vari-
ables representing alignments, topics, and
source language word senses. The model
structure and priors are motivated by in-
sights from sense discrimination, topic
modeling, and translation modeling. The
conditional structure of the model means
the topics and senses explain regularities
in how words translate, rather than in the
distribution of word types. Using the
inferred word alignments and translation
probabilities, we show gains on German–
English alignment and translation tasks,
and we also obtain state-of-the-art results
on an unsupervised English word sense in-
duction task by incorporating Czech trans-
lations of the training data.

1 Introduction

Lexical translation models (Brown et al., 1993;
Vogel et al., 1996; Dyer et al., 2013) continue to
play a central role in statistical machine transla-
tion. They are used for word alignment and to
smooth distributions for more complex translation
models (Koehn et al., 2003; Chiang, 2007), as
reranking features (Och et al., 2004), and for bilin-
gual lexicon induction. A central simplifying as-
sumption in these models is that the translation de-
cision at each position in the output is condition-
ally independent of all other decisions, given the
identity of the aligned source word. Such models
therefore fail to explicitly capture the translation
variants of polysemous and homonymous words.
This paper propose a new translation model with
latent word sense indicators that addresses this
limitation.

We motivate the high level structure of our
model with an example. Consider the French
word prix. This word has two primary senses
corresponding to English price and prize. In a
French–English parallel corpus, we will find this
homonymy reflected by a relatively “flat” empiri-
cal distribution over the English translations used
for this word. However, if we considered the sen-
tences discussing a topic like finance, we expect to
find that the first sense is meant far more often, and
that the translation distribution is far more peaked
around words meaning price. On the other hand,
in the sentences about sports, we expect to find the
second sense more often, with the translation dis-
tribution peaked around prize.

Our proposed model (§2) captures this interac-
tion between topic, sense, and translation. We use
priors encode four insights that are well-known
from the literature on word sense discrimination,
topic modeling, and translation: (i) that differ-
ent senses of the same word will tend to trans-
late differently (Diab and Resnik, 2002) (Yao et
al., 2012); (ii) that words will tend to have a small
number of frequent translations (Riley and Gildea,
2012); (iii) that topics (i.e., contexts) will have
few senses per word type—the “one sense per dis-
course” heuristic (Gale et al., 1992b); and (iv)
that documents will tend to have a small number
of topics (Blei et al., 2003). Although each of
these insights is appreciated, our work is the first
to combine them all into one single model where
they interact. Additionally, the conditional struc-
ture of the model means notions of topic and word
sense will be used to explain how words translate,
rather than the distribution of words in a mono-
lingual corpus. Given a parallel corpus, posterior
inference (§3) lets us reason about a variety of use-
ful marginal quantities: translation probabilities in



the context of a given sense, the number of word
senses for a word type, sense labels, and word
alignments.

We evaluate our model on two separate tasks
(§4). The first is a German–English bitext align-
ment task, which we evaluate both intrinsically,
using Alignment Error Rate (AER), and extrinsi-
cally, by introducing a feature based on our model
into the translation system. The second is an En-
glish word sense induction task, for which the
training data was independently translated into
Czech.

2 Model

Since our model incorporates elements of a proba-
bilistic topic model (Blei et al., 2003) and a lexical
translation model (Brown et al., 1993) using hi-
erarchical Pitman–Yor process priors (Pitman and
Yor, 1997; Teh, 2006) (Goldwater et al., 2011), we
briefly review these (§2.1) and then describe our
complete model (§2.2).

2.1 Background
The Pitman–Yor Process. The Pitman–Yor
process (PYP) is a generalization of the nonpara-
metric Dirichlet Process (DP). In addition to the
strength α and base distribution P0 of a DP, the
PYP has a third parameter d ∈ [0, 1) called the
discount parameter. The DP is a special case of the
PYP process where d = 0, and there is a roughly
exponential decay in the probability of new draws
from the base distribution. Larger values of d
dampen the “rich get richer” dynamic of the DP
resulting in the “heavier” tail of a power-law distri-
bution. Such distributions are effective models of
type distributions in natural language (Teh, 2006)
(Goldwater et al., 2006).

Posterior inference is possible by marginalizing
the draws from PYPs using a Chinese Restaurant
process (CRP) sampling scheme. In contrast to the
DP version of the CRP, the number of customers
seated at a table is “discounted” by d. Thus, tables
with just one or two customers contribute much
less than in a DP as d→ 1.

Latent Dirichlet Allocation. Latent Dirichlet
Allocation (LDA) is a probabilistic topic model
that models a collection of documents using
shared topics which are distributions over words.
Documents are generated by choosing a mixture
of topics θd, and then the ith word is generated by
selecting a topic td,i from θd and then word wd,i

from φt. θd is drawn from a Dirichlet distribution,
which encodes the belief that documents will gen-
erally be about a small number of topics. The φk
are either set to maximize likelihood or inferred
as draws from a Dirichlet distribution. Thus this
model is able to infer a distribution over topics for
each document in a collection, as well as a list of
words that most strongly indicate membership to
each topic.

One-Parameter Model 2. IBM Model 2
(Brown et al., 1993) is a generative model of
translation that is usually used to infer word
alignments in a bitext. Given a source sen-
tence f = 〈f1, f2, . . . , fm〉 and a target length
n, the model generates a sequence of align-
ments a = 〈a1, a2, . . . , an〉 and target sentence
e = 〈e1, e2, . . . , en〉. The alignment distribution
we use is due to Dyer et al. (2013), and says
that p(ai = j | m,n) ∝ exp−λ

∣∣∣ in − j
m

∣∣∣. In
this model, alignment decisions for each target
position i are independent of each other, making
extremely efficient inference possible. Finally
each ei is generated conditional on fai .

2.2 The Topic-Sense-Translation Model
Our model is based on several key intuitions. First
and foremost is that different senses of polyse-
mous words will translate differently into a for-
eign language. For example, the English word
plant is polysemous—it can mean either a green
leafy lifeform or a place where goods are manu-
factured. German uses completely different words
these two senses: Pflanze for the green thing and
Anlage for the one with smokestacks. The sec-
ond intuition behind our model is that within a
given domain, polysemous words tend to have a
dominant sense. For example, within the domain
of ecology, the biological sense of plant will be
used almost exclusively. Conversely, when speak-
ing about commerce, the manufacturing sense of
plant will be dominant. Our third intuition is that
each document in a corpus tends to pertain to be
about a small number of topics. That is to say that
when reading a news article about worker condi-
tions in manufacturing plants, we can feel rela-
tively sure that the author will not switch gears and
talk about ecology later in the article. Of course,
this can happen, we just expect a priori that docu-
ments will be about few topics. Since polysemous
words tend to exhibit one sense per topic, and each
document typically pertains to just one topic, the



T (Observed) Number of topics
Z (Observed) Number of senses per word
ρ (Observed) Parameter for senses’ Geometric prior

VE (Observed) Number of target vocabulary types

θ0 ∼ PYP(Uniform(T )) Base distribution over topics
ψf ∼ PYP(TruncGeom(ρ, Z)) Distribution over senses for source type f

ψf,t | ψf ∼ PYP(ψf ) Distribution over senses for source type f in topic t
φ0 ∼ PYP(Uniform(VE)) Distribution of target words

φf | φ0 ∼ PYP(φ0) Translation table for source type f
φf,z | φf ∼ PYP(φf,z) Translation table for source type f with sense z

θd ∼ PYP(θ0) Distribution over topics for document d

nd (Observed) Number of source tokens in document d
md (Observed) Number of target tokens in d
fd,j (Observed) Source word j
td,j ∼ Categorical(θd) Topic of source word j

zd,j | td,j , fd,j ∼ Categorical(ψfd,j ,td,j ) Sense of source word j
ad,i | nd,md ∼ Diagonal(i, nd,md) Alignment link for target word i
ed,i | a,f ∼ Categorical(φfad,i ,zad,i ) Target word i

Figure 1: Formal definition of our model. The first group of variables are given, the second group
are parameters marginalized during inference, and the third are observed or inferred data values. PYP
hyperparameters are not shown here, but discussed in the text.

combination of intuition number two and intuition
number three gives rise to the famous “one sense
per discourse” maxim. We capture these intuitions
as priors. Importantly, we only these to hold in
expectation, they may be violated in individual
cases.

The formal generative process shown in Fig-
ure 1 and the corresponding plate diagram in Fig-
ure 2. We describe the process here in text and
explain our modeling decisions. We assume that
the parallel corpus contains T topics, and that no
word type has more than Z, and that the number
of senses for a word type is governed by a trun-
cated geometric distribution with parameter ρ. For
each parallel document d in the corpus, we draw
mixing proportions θd over the T topics from a
PYP with a uniform base distribution of T top-
ics. A document about the effect of oil drilling on
river ecosystems might have been generated from
a θd that assigns 80% of its probability mass to
the topic corresponding to ECOLOGY, with the re-
maining 20% assigned to the topic corresponding
to ECONOMY. Then, for each source word fi in
d, we draw its topic indicator ti,d from θd. Note
that in contrast to more familiar LDA models, we
do not generate fi, but rather observe it, since our

intention is to let topic variables explain transla-
tion regularities, not to explain the distribution of
source word types.

For each (f, t) tuple of a source word type and
a topic, we generate draw a distribution ψf,t over
sense indicators (i.e., natural numbers in [1, Z])
as a draw from a hierarchical PYP with the trun-
cated geometric base distribution described above.
We have already predicted a topic for each source
word instance in our corpus, so we can use this
distribution ψf,t to assign each instance a sense in-
dicator z. The distribution ψf,t might tell us, for
example, that if we see the word bank paired with
the ECOLOGY topic, it will refer to a sloping land
mass at the side of a river 95% of the time. If,
however, we see bank with the topic FINANCE, it
refers to the financial institution sense 75% of the
time, and the act of hoarding 20% of the time.1

Next, we draw a per-sense translation table φf,z
for each (f, z) tuple of a source word and a sense.
To illustrate the behavior of φf,z we would expect
that in a German–English model when f = bank
and z is the majority sense of the ECOLOGY topic,

1The decision to use separate topic and sense variables
may seem somewhat surprising. However, our intuition is
that topics are distributions over word senses, and that differ-
ent word senses will be shared across topics.
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Figure 2: Plate diagram of our model. Explanation
of notation and distribution information is given in
Figure 1.

φf,z would likely assign a high probability to the
German word Ufer.

At this point, we have generated sense tags for
every source word in the corpus, and have sense-
specific translation parameters. We now generate
alignments using the one-parameter Model 2 pro-
cess described above and then generate each tar-
get word conditioning on the sense-tagged source
word and using the appropriate φf,z .

Remarks on the PYP Hierarchy. To make our
generative model more robust to noisy and sparse
data, we use hierarchical priors over topics for
each document, θd, the distribution of senses given
a word type and a topic ψf,t, and the per-sense
translation table φf,z . This hierarchical structure
encourages these key distributions to be “close” to
an underlying distribution that conditions on one
less variable. Thus, in cases of noise or sparsity,
related distributions can share statistical strength,
giving improved estimates of the probability of
rare phenomena.

In particular, we desire that the per-sense trans-
lation tables be based upon an underlying transla-
tion table that conditions only on the source word,
ignoring the sense. This structure allows each per-
sense translation table to then specialize, assigning
more probability mass to a select few translations
at the expense of others. For example, the under-
lying sense-agnostic translation table of the En-
glish word plant might say that it translates to the
German Anlage 60% of the time and Pflanze 30%
of the time, with the last 10% reserved for other
words. The translation table of plant1 might give
the translation Anlage extra probability, leaving

the percentages at Anlage 90%, Pflanze 5%, with
the final 5% forming the tail. The translation ta-
ble of plant2 will hopefully choose to reassign the
probability mass quite differently, choosing some-
thing like Pflanze 80% of the time. Since PYP
processes encourage reuse of existing translations,
this will be a stable state if these two senses re-
ally do account for how plant translates in the data.
In this way, the translation tables are free to spe-
cialize and choose only a few translations out of
the palette provided by the underlying distribution,
yet still must be somewhat similar, thus prevent-
ing rampant overfitting and diminishing the prob-
ability of using of completely implausible English
words.

We use such a structure for θd, with a prior θ0
that does not condition on any particular docu-
ment, thus representing the frequency with which
a topic will be used in some document. For ψf,t,
we do something similar for, backing off to a ψf

that conditions on f , but not on t, thus represent-
ing the prior probability that f will be used with
a particular sense in a new topic. For the sense-
specific translation probability, we first back off to
a distribution φf that conditions only on the source
word f , but not on its sense z. That back off, in
turn, backs off to yet another prior φ0, which con-
ditions on neither f nor z, thus representing only
the prior probability of an English word being used
in a sense-agnostic translation model.

Hyperparameters. The proposed model has a
large number of hyperparameters, i.e., the dis-
count and concentration parameters for each PYP.
Rather than specifying these directly, we use a so-
called “vague” priors on the hyperparameter val-
ues marginalize them as well. For discount pa-
rameters, we draw from Beta(1, 1) (i.e., the uni-
form distribution on (0, 1)), and for concentration
parameters, we draw from Gamma(1, 1), which
encourages values closer to 0 (Johnson and Gold-
water, 2009).

To ensure that ψf is sparse, representing the in-
tuition that most words have a very small num-
ber of senses, we impose a Geometric prior on
ψf . This ensures that the model will prefer to
limit each word to a single sense, unless there is
substantial evidence of polysemy. Furthermore,
the computational cost of each additional sense
per word increases exponentially, ensuring that the
model will not use 5 senses when two will do.



3 Inference with Gibbs Sampling

Given a corpus of parallel data, we reason about
posterior distributions over senses and alignments
using a collapsed Gibbs sampler. In particular, the
θ, ψ, and φ variables are all collapsed out (Chen et
al., 2011). All experiments are run with 1000 iter-
ations of the resulting Gibbs sampler. All relevant
outputs are calculated by taking the average of out-
puts after each iteration, with a burn-in of 500 it-
erations. Pitman–Yor priors have their parameters
re-sampled using slice sampling (Neal, 2003) ev-
ery 30 iterations. All latent categorical variables
are initialized to values drawn from a uniform dis-
tribution over the relevant domain.

For our experiments, we cap the possible num-
ber of senses per word at 5, which seems reason-
able as only extremely few words have more than
5 general senses. Furthermore, we limit the num-
ber of topics to 5. This is in contrast to many un-
supervised topic models, such as LDA (Blei et al.,
2003), which typically set the number of topics to
several hundred. We can use such a small number
of topics only because our topics do not directly
generate words, as in LDA, but are instead only
concerned with differences in how words translate.
This means that our topics do not necessarily cor-
relate well with the human notion of topic, but still
capture the correlation between senses of different
words. Future work will look at ways to marginal-
ize these variables.

If, for example, two human senses, say sports
and manufacturing, do not oppositely affect the
sense probabilities of any individual word, putting
them into the same cluster will have no effect on
results. For example, knowing that we’re in the
manufacturing domain means that the word “pro-
duce” is likely a verb meaning to generate output,
and not fresh vegetables. If we’re talking about
sports, however, it is unlikely that we will see the
word “produce” at all. So long as the set of words
that that have manufacturing specific senses is dis-
joint from the set of words that have sports spe-
cific senses, combining the two into one pseudo-
topic has no negative impact on the efficacy of the
model.

4 Experiments

We tested the effectiveness of our model on several
tasks, including both intrinsic and extrinsic evalu-
ations of the alignments produced by our model,
the effect of introducing the probabilities gener-

Prec. Rec. AER

fast align (dir) 71.1% 73.8% 27.6%
fast align (gd) 72.4% 75.8% 26.0%

fast align (gdfa) 70.8% 76.6% 26.6%
this work (dir) 71.7% 78.6% 25.2%

this work (gd) 77.0% 80.7% 21.3%
this work (gdfa) 75.3% 81.9% 21.8%

Table 1: Intrinsic Alignment Quality Results

ated by our model as a feature in a translation
system, and the quality of the monolingual word
senses induced by our model.

4.1 Intrinisic Alignment Evaluation
First, we tested the intrinsic effectiveness of the
model as a bilingual aligner. We compare the
alignments produced on a data set to human an-
notated alignment links using the standard met-
rics, Precision, Recall, and Alignment Error Rate
(AER), and compare to Dyer et al. (2013)’s
fast align, a strong, modern baseline. We compare
both directional word alignments (dir), and bidi-
rectional alignments symmetrized with the grow-
diag (gd) and grow-diag-final-and (gdfa) heuris-
tics (Och and Ney, 2003) on a 100, 000-segment
subset of the German–English news commentary
data from WMT. As a preprocessing step, we run
Dyer et al. (2010)’s tokenizer on both the German
and English sides of the data. We then run their
German compound splitter on the German side.
Finally, we run each side of the data through the
Snowball Stemmer (Porter, 2002) for its language.
Examples of latent senses in this data uncovered
by our model can be seen in Figure 3.

In the directional case we see only moderate
gains in precision, but nearly 5% better recall us-
ing our model, leading to about 2.5% lower AER.
After symmetrizing, the results are even more dra-
matic: a 4.5% increase in precision, and just over
5% improvement in recall, leading to over 4.5%
improvement in AER using both symmetrization
heuristics, as seen in Table 1.

4.2 Extrinsic Alignment Evaluation
Furthermore, we can test the effectiveness of
these improved alignments in an actual transla-
tion system. To this end, we built a hierarchical
phrase-based translation (Chiang, 2007) German–
English translation system using 153, 800 seg-
ments (3, 947, 916 German tokens) of WMT news
commentary data. We build the system using the



Kopf1 Kopf2 Kopf3
10.9% 38.2% 50.9%
capita down head
minds upside heads

it capita mind
heads leaders minds

head cool

schlagen1 schlagen2
21.1% 78.9%
beat are

defeat proposing
suggest capitalize
propose hit

capitalize propose

Figure 3: Examples of senses uncovered by our model for the German words Kopf (“head”) and schlagen
(“beat/hit” or “propose”), their inferred relative frequencies, and their most probable translations.

cdec decoder and framework (Dyer et al., 2010).
The data were aligned by using either fast align or
our model and symmetrized with grow-diag-final-
and. The system was tuned with 20 iterations of
Batch MIRA (Cherry and Foster, 2012) on the
WMT 2012 test set, and tested against the WMT
2013 test set. Overall, our alignments yielded
an improvement of +0.6 BLEU over the baseline
alignments produced by fast align. Full results can
be seen in Table 2.

BLEU METEOR TER |ê|/|e∗|
fast align 18.7 37.7 59.1 93.6
this work 19.3 38.4 59.1 95.7

Table 2: Extrinsic alignment quality results
(German–English translation).

4.3 Translation Reranking

The above tests test the effectiveness of the align-
ments output by the model, but have yet to show
the full power of the model as a feature in transla-
tion. To that end, we included our aligner’s scores
as a feature in a set of k-best re-ranking experi-
ments.

We use the same baseline German–English
translation system as the previous experiment
and extract 1000-best lists on the tuning and
testing sets. We then compute the log likeli-
hood of each hypothesis given each source seg-
ment under the posterior predictive distribution of
our sense-augmented alignment model. In these
reranking experiments, the alignments produced
by fast align were used.

If we were to include this feature inside a de-
coder, rather than by adding it to a k-best list to
be reranked, we would lack the full target side
of the sentence, making computation of the log
likelihood under our model difficult. Furthermore,
even in our case where we do have access to tar-

get language hypotheses, the latent variables in our
model cannot be topologically sorted for easy in-
ference. For both of these reasons, it is attractive
to build a monolingual sense induction model.

To this end, we build a logistic regression clas-
sifier trained on the data provided by our German–
English training set. For each token t in a sentence
S in the source side of the training corpus, we con-
struct an input feature vector wherein each feature
is a tuple of source word types, (w, v). The fea-
ture (w, v) takes the value 1 iff w = t and v ∈ S,
i.e. if w is the type of the token t and v co-occurs
with t in the sentence S, and takes the value 0 oth-
erwise. In place of gold standard data, we train
our model on the entirety of the training set and
use the inferred senses as “wood standard” labels.
This classifier is able to recover the senses of its
training data with 95.3% accuracy.

With this classifier, we can easily label the sense
of each token on the source side of our k-best list.
With the senses observed, the optimal alignment
under our model is easily computable, along with
its score. It is the log of this score that is added as
a feature to the k-best list.

BLEU METEOR TER |ê|/|e∗|
Baseline 18.7 37.7 59.1 93.6

Our Model 19.0 38.0 59.5 96.0

Table 3: Results of re-ranking experiments using
three standard MT evaluation metrics. The last
column shows the length of the translations rela-
tive to the reference length.

We then use a discriminative reranker based on
the loss function described by Yadollahpour et al.
(2013), trained on our held-out tuning set to pro-
duce an updated set of weights, including a weight
for the feature representing our model’s score. We
find that adding the log of the likelihood our model
assigns to each element in the k-best list as a fea-



ture results in an improvement of +0.3 BLEU over
our baseline system. Detailed results can be found
in Table 3.

4.4 Sense Induction

Finally, we examine how well the senses inferred
by our model correspond to human word sense
intuitions by testing it on an English sense in-
duction task. For this task, we used the the sec-
tion of the OntoNotes corpus (Hovy et al., 2006)
taken from the Wall Street Journal, consisting
of 49, 208 segments (1, 214, 801 English tokens),
and often used for sense induction tasks (Brody
and Lapata, 2009) (Yao and Van Durme, 2011).
Our approach requires, however, the rather non-
conventional constraint that the training data has
to have been translated into a foriegn language.
Thankfully, Čmejrek et al. (2004) translated this
section of the Wall Street Journal into Czech, as
part of their larger project, the Prague Czech–
English Dependency Treebank.

While running the full model is certainly
tractable, we can achieve substantial speed up, and
reduce overfitting, by capitalizing on an extra ben-
efit of our use of a Gibbs sampler to do inference.
Gibbs sampling affords us the ability to use any
amount of supervised data available by simply set-
ting the value of the relevant latent variables to
the supervised values, while continuing to sam-
ple the other, unsupervised latent variables. Since
in this task we are interested in the word senses
rather than the alignments, we decided to align the
corpus with fast align, and use the resulting align-
ments as supervised data. We then run the model,
and output the model’s predicted word sense for
each English token.

Due to the fact that the senses output by our
model are in no way ordered, the sense numbers
output by our model are not guaranteed to match
up with the sense numbers used by the OntoNotes
annotators. As such, when evaluating our model’s
output, we first build a map for the model’s hy-
pothesized word senses to the OntoNotes refer-
ence word senses, by choosing the reference sense
r that maximizes p(r | w, h) for each word w and
hypothesis sense h. We then transform our algo-
rithm’s output deterministically, using this map,
into a form that is directly comparable to the
OntoNotes annotations.

Previous work, such as (Brody and Lapata,
2009), has built this map by holding out a de-

velopment set to learn the map from the hypoth-
esis sense space to the gold standard sense space.
Since we have limited data in Czech, and are loath
to hold out extra data, we instead decided to use
the leave-one-out methodology to map our out-
put to the reference sense space. For each word
in the corpus, we compute the empirical relative
frequencies f(r | w, h) from all the other word
instances in the corpus, and using that model, we
predict the label the reference will assign to the
one given word.

Using this method, we find that our algorithm
predicts the sense of English words with 85.5% ac-
curacy, compared to the 80.9% accuracy achieved
by the naı̈ve baseline of always choosing the
most frequent sense for each English word, 86.7%
achieved by Yao and Van Durme (2011), and
87.3% achieved by Brody and Lapata (2009). For
comparison, we also trained our monolingual clas-
sifier to predict English word senses monolin-
gually, using its output on the Wall Street Journal
task and achieving 84.5% accuracy. The result-
ing monolingual logistic regression classifier per-
formed reasonably, but slightly worse than the full
bilingual model.

Our bilingual model’s performance, as seen in
Table 4, did not quite match the current state of
the art evaluated in terms of matching a monolin-
gual sense inventory. Since word sense inventories
are typically constructed to reflect monolingual se-
mantic differences rather than to distinguish trans-
lation decisions (which will be influenced by nu-
merous factors, but typically correlate well with
different senses), we look at the performance of
our model in which sense-specific distributions
generate monolingual context words rather than
translations. Using Brody & Lapata’s highest per-
forming feature category, a 10-word context win-
dow around each source word, when resampling
a the sense z for a source word fm, we consider
the probability of generating the nearby words,
p(fm+i | fm, z) for i ∈ [−10, 10], i 6= 0, like-
wise assuming these distributions are draws from
a nonparametric prior. Adding in this one cate-
gory of monolingual features increased the perfor-
mance of our model by 3.2%, allowing us to sur-
pass the current reported state-of-the-art reported
in Brody and Lapata (2009).



Method Accuracy
One Sense Per Type 80.9%

Monolingual 84.5 %
This work (Bilingual) 85.5%

Yao and Van Durme (2011) 86.7%
Brody and Lapata (2009) 87.3%

This work (Mono context) 88.7%

Table 4: Sense induction performance.

5 Related Work

Topic-based domain adaptation of the translation
model was previously explored by Tam et al.
(2007), who propose a bilingual topic model based
on Latent Semantic Analysis. Similarly Eidelman
et al. (2012) use Latent Dirichlet Allocation to
form topics over source sentences. Ruiz and Fed-
erico (2011) apply topic models based on Proba-
bilistic Latent Semantic Analysis to the adaptation
of language models. The insight that adaptation
of translation distributions is better captured with
a “conditional” topic model is also explored in the
work of Hasler et al. (2014), who model this topic-
specific models of phrasal translation probabilities
(rather than the word translation probabilities we
use).

More broadly, a polylingual implementation of
topic models is given by Mimno et al. (2009).
They detail a generative model capable of find-
ing cross-lingual topics given parallel documents
in two or more languages, and apply their model
to many down stream tasks, including translation.

Lau et al. (2012) monolingually use topic mod-
els to infer senses, paying particular attention to
detection of novel word senses and tokens of these
new “emergent” meanings.

Zhao and Xing (2006) describe a topic-aware
alignment model quite similar to that used in this
work. However, they limit sentences to have only
a single topic, rather than being represented by a
mixture of topics as in this work. Furthermore,
they apply their model directly as a word aligner,
achieving improved word alignment accuracy but
failing to demonstrate improved translation qual-
ity.

The idea of re-ranking hypotheses using for-
ward (target given source) and reverse (source
given target) IBM Model 1 scores was first ex-
plored in Och et al. (2004). They found that re-
verse Model 1 scores were their top performing
feature, while forward scores showed no noticable

gain.
Gale et al. (1992a) were among the first to

leverage large corpora to do automatic word sense
disambiguation. Brody and Lapata (2009) took a
modern, Bayesian approach to the problem to nice
effect. Yao and Van Durme (2011) continued this
path by using non-parametric Bayesian models to
tackle the problem, but still limit themselves to a
monolingual feature set.

Diab and Resnik (2002) applied clustering
techniques to translation tables to infer latent
senses from parallel data.

Lyse (2011) explore a large variety of tech-
niques for exploiting differences in how lexical
items translate to infer word senses, specifically
for the English–Norwegian language pair.

Task-specific representation learning for lan-
guage, which is one way of understanding this
work, is becoming increasingly common as neural
networks grow in popularity (Socher et al., 2013)
(Kalchbrenner and Blunsom, 2013) (Devlin et al.,
2014); however, these have been largely in the
form of distributed representations, rather than the
discrete topic and sense indicators we infer in this
work.

6 Conclusion

In this paper we proposed a novel technique for
handling vocabulary items that exhibit domain-
sensitive polysemy by using a Bayesian model
to simultaneously infer topics, word senses, and
translation tables from a bitext. We evaluated
the resulting alignments both intrinsically, using
AER, and extrinsically, as part of a full translation
system. Finally, we show that our model can be
used to achieve good performance in an unsuper-
vised word sense induction task, provided that the
training data has been translated into another lan-
guage, and that state-of-the-art performance can
be achieved by combining our model with the
power of source-side co-occurrence information.
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